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Abstract

As an important methodology to measure distribution
discrepancy, optimal transport (OT) has been successfully
applied to learn generalizable visual models under chang-
ing environments. However, there are still limitations, in-
cluding strict prior assumption and implicit alignment, for
current OT modeling in challenging real-world scenarios
like partial domain adaptation, where the learned trans-
port plan may be biased and negative transfer is inevitable.
Thus, it is necessary to explore a more feasible OT method-
ology for real-world applications. In this work, we fo-
cus on the rigorous OT modeling for conditional distribu-
tion matching and label shift correction. A novel masked
OT (MOT) methodology on conditional distributions is pro-
posed by defining a mask operation with label information.
Further, a relaxed and reweighting formulation is proposed
to improve the robustness of OT in extreme scenarios. We
prove the theoretical equivalence between conditional OT
and MOT, which implies the well-defined MOT serves as a
computation-friendly proxy. Extensive experiments validate
the effectiveness of theoretical results and proposed model.

1. Introduction

For real-world visual data in unconstrained environ-
ments, detecting the shift of data distributions and mea-
suring the statistical discrepancy are essential problems for
learning generalizable model [29, 30, 51]. Considerable
efforts have been made to build well-defined metrics on
distributions, where the optimal transport (OT) based dis-
tances have shown significant advantages in sample-wise
correlation characterization and geometric interpretability
[6,7,9,11,12,24,27]. Under the guarantees of appealing the-
oretical properties, OT-based modules [8, 10, 11, 16, 20, 24]
are extensively explored to learn the transferrable model-
s. These advanced models have also been successfully ap-
plied to the computer vision and pattern recognition tasks in
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changing environments, e.g., object classification [31, 39],
semantic segmentation [52] and medical images [42].

A typical scenario for learning under distribution shift is
known as domain adaptation (DA), where the model trained
on the labeled source domain P is expected to be trans-
ferrable to unlabeled target domain with different data dis-
tribution Q. In DA, source domain and target domain share
the same label space Y , then inspired by distribution adap-
tation theory [1, 48], the OT-based models usually focus on
learning invariant properties, e.g., marginal invariant repre-
sentations [8, 11, 28], adversarial invariant representation-
s [16], conditional invariant representations [19, 24, 38] and
joint invariant representations [10, 20].

However, in real-world scenarios, the label space usu-
ally changes with the shifting distributions, which induces
the partial DA (PDA) problems [2, 3, 16, 21, 25]. Recent
theoretical results [38, 49] also imply that the shift on la-
bel distributions [47] is non-negligible in application, and
the label distribution correction is necessary to achieve a
sufficiently small joint risk across domains. Therefore, if
label distributions PY and QY are different, a correction
(e.g., reweighted and relaxation) on source PY is usual-
ly necessary [22, 47]. Since there are strict constraints on
the marginal distributions, classical OT models will learn
incorrect sample correlation and further induce the nega-
tive transfer problem. Typically, to address these issues,
there are two types of variants for OT. 1) Reweighted OT
[16, 32, 33] introduces a reweighted operation, which aim-
s to detect the outlier classes (i.e., unseen classes in target
domain) and decrease their masses in PY . Then the OT
assignment, which is constrained by reweighted source dis-
tribution, will only transport the information that is shared
by both domains. However, the effectiveness of these mod-
els directly depends on the reweighted function w, where
models could be error-prone when weight w is inaccurate.
2) Unbalanced OT (UOT) [5, 11] introduces relaxation to
the strict marginal constraints by penalizing the assignments
that don’t meet the constraints. Such a relaxation allows
the assignments to focus on the correct correlation with low
transport cost and ignore the incorrect transportation to out-
lier classes with higher cost. But, since the relaxation is



applied to original distributions, the penalty will be unaf-
fordable and the relaxation will fail when cross-domain dis-
tributions are significantly different.

Besides, as a sufficient condition to achieve successful
DA, the conditional shift correction has received increasing
attention recently [14, 19, 23, 38]. Several pioneering work-
s [19, 24, 32] on the OT modeling between conditional dis-
tributions have shown great potential in mitigating negative
transfer and reducing generalization risk. But, there are still
several limitations, i.e., strict assumption on kernel Gaus-
sian prior [24], implicit conditional alignment via reweight-
ed source [32] and implicit proxy with small intra-class
discrepancy assumption [19]. Recently, OT with mask is
proposed to integrating label information into OT. Zhang et
al. [46] first define the mask on transport plan. Gu et al. [15]
further establish the mask theory for Gromov-Wasserstein.
However, theoretical understanding on the relation between
mask mechanism and conditional OT is unexplored. Thus,
it is necessary to explore a general and explicit formulation
of OT for sufficient conditional distribution matching, and
develop computation-friendly algorithms for application.

Generally, to alleviate the difficulties in current OT
methodology for label distribution correction and condi-
tional distribution matching, known as generalized label
shift (GLS) correction, we are interested in two major prob-
lems: 1) rigorous modeling and explicit algorithm for OT
between conditional distributions; 2) unbiased and relaxed
transport plan learning for extreme generalization scenari-
o, e.g., PDA. In this paper, we propose a novel masked OT
(MOT) methodology by introducing a relaxed and reweight-
ed OT formulation and the conditional mask mechanism.
Further, we derive an efficient fixed-point method for learn-
ing OT assignment, and propose an OT-based invariant risk
model to deal with the extreme PDA problem. Our contri-
butions can be summarized as follows.

• The theoretical connection between MOT and condition-
al OT is proved for commonly used OT formulation-
s. The main result ensures the proposed mask mecha-
nism and MOT model are sufficient to characterize the
label-conditioned sample correspondence and measure
the conditional discrepancy explicitly.

• A relaxation and reweighting based OT formulation is
proposed, which overcomes the sensitivity of current OT
modelings to weight estimation and intrinsic label dis-
crepancy. Intuitive analysis is presented to show the ad-
vantages of MOT methodology.

• With theoretical guarantees, a computation-friendly em-
pirical estimation with explicit fixed-point algorithm is
proposed as proxy for conditional OT. Then an equivalen-
t risk model is proposed to learn minimized risk on both
source and transported source domains. The application
to PDA is extensively evaluated, which validates the ef-

fectiveness of theoretical results and proposed model.

2. Methodology: Masked OT
Notation. Let X and Y be the covariate and label vari-

able, which take their values fromX andY . P andQ denote
the distributions of source and target domains, where lower-
case letters p and q denote the probability density functions
(PDFs) and subscripts represent the corresponding random
variables, e.g., PY implies the label distribution on source.
Given a positive convex function φ with φ(1) = 0, the
φ-divergence is defined as Dφ(P‖Q) , EQ[φ( dP

dQ )]. Es-
pecially, when φ(t) = t ln t, Dφ(P‖Q) boils down to the
well-known KL divergence. For a learning model f : X →
Y , given a loss function ` : Y × Y → R+, we denote the
risk of f on PXY as εP (f) = EPXY [`(f(X), Y )].

2.1. Preliminary

GLS Correction and PDA. The label distributions (e.g.,
class proportions) in real-world scenarios usually induces
the increasing discrepancy between marginal distribution-
s PY and QY [22, 47]. Such a phenomenon is formally
known as label/target shift [22, 47]. Note PDA can be tak-
en as an extreme scenario of label shift, where the pro-
portions of outlier classes will shift to 0 in target distri-
bution Q, i.e., supp(qY ) ⊂ supp(pY ). Thus, many PDA
methods are developed under the shift correction frame-
work, e.g., reweighted moment matching [34,45], reweight-
ed OT [16, 33], relaxation OT [11, 28] and reweighted ad-
versarial adaptation [2, 3]. One the other hands, to achieve
better generalization, models are usually required to ex-
tract invariant discriminant information and intrinsic pattern
across domains, which can be theoretically characterized as
the matching between conditional distributions PZ|Y and
QZ|Y [14, 18]. These models aim to develop discrepancy-
based objectives for learning conditional invariant represen-
tation Z, e.g., conditional adversarial loss [23], conditional
Bures metric [24], conditional moment matching [40, 50]
and local structure transfer [25, 41].

Recently, by merging label shift and conditional shift,
GLS is extensively studied to explore the transferability and
discriminability of DA models [19, 35, 38, 47]. Theoreti-
cally, shifting distributions lead to the biased risk estima-
tion (i.e., εP (f) 6= εQ(f)) and cluster misalignment (i.e.,
PZ|Y 6= QZ|Y ), which explicitly degrades generalization
performance. Typically, GLS can be mitigated by introduc-
ing the reconstructed source PwZY parameterized by impor-
tance weight w and conditional invariant representation Z.
Ideally, the model trained on weighted source PwZY is suf-
ficient for small generalization error and successful trans-
fer [38], which implies GLS-based model can be effective
in dealing with complex dataset shift scenarios, e.g., PDA.

UOT. Recently, OT-based models have been successfully
applied to transfer learning problems [8, 10, 11, 20, 28, 33].
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Figure 1. Illustration of different OT formulations. (a)-(b): For
OTs with constraints on marginal distributions, though weight w
makes ideal solution γoracle closer to the feasible region Π, γoracle
is still unachievable (+∞ penalty). (c): UOT with relaxation re-
places the constraints with smooth penalty, but γoracle is still far
away from the center, which leads to large penalty. (d): Our for-
mulation Eq. (3) with relaxation Dφ and reweighted Pw ensures
that γoracle belongs to the feasible region with smaller penalty.

In classical OT, by introducing the entropy regularization
H(γ) = Eγ [− ln(dγ)], the Sinkhorn divergence [9] be-
tween distributions P and Q can be formulated as

Sλ(P,Q, c) = min
γ∈Π(P,Q)

∫
cdγ − λH(γ), (1)

where Π(P,Q) is the set of probabilistic couplings over
P and Q, λ is parameter of sparsity penalty, c is the cost
function for transport, e.g., c is defined on X 2 for marginal
OT [8, 20] and (X × Y)2 for joint OT [10, 44].

Further, to deal with more general scenarios, e.g., un-
equal total mass and label shift, UOT [6, 7, 11] is proposed
as a relaxation of classical OT Eq. (1). Specifically, by re-
placing the strict marginal constraint γ ∈ Π(P,Q) with re-
laxed penalty terms on γ, UOT can be formulated as

Sλ,β(P,Q, c) = min
γ∈M+

∫
cdγ − λH(γ)

+ β [Dφ(γP ‖P ) +Dφ(γQ‖Q)] ,

(2)

where γP and γQ are the marginals of γ, β is the parameter
for marginal penalty,M+ is the space of distributions, e.g.,
M+(X 2) over space X 2 for marginal UOT [6, 11].

2.2. New Formulation and Analysis

Motivation. Though the reweighted strategy [16, 32,
38, 47] and UOT methodology [11] have been explored for
knowledge transfer, there are still potential weaknesses that

we are interested in: 1) though the marginal alignment be-
tween Pw and Q mitigates label shift, e.g., MMD [47] and
OT [16, 32, 33] on weighted source, it ignores the condi-
tional shift which usually degrades the discriminability; 2)
the performance of adaptation with Pw significantly de-
pends on the precision of estimation w as Fig. 1 (b), which
may degrade the robustness of shift correction model; 3) the
marginal penalty with P in UOT [11] is sensitive to the de-
gree of label shift as Fig. 1 (c), especially for the extreme
PDA scenario with large label discrepancy.

To address the challenges above, we first introduce a
novel OT with reweighted and relaxation, which reduces the
uncertainty of estimation w and alleviates the large penalty
on original distribution P simultaneously. Then we pro-
pose the conditional UOT formulation, which characterizes
label-wise correlations and mitigates conditional shift.

Relaxed and Reweighted Formulation. To overcome
the bias of risk estimation εP with label proportion PY on
original source domain, the reweighted strategies for mod-
ifying distribution are widely applied [19, 35, 38, 47]. To
unify the different formulations, we first present a rigorous
definition of w-reweighted source as follows.

Definition 1 Given a reweighted function w : Y → R+

such that w · pY is also a PDF on Y .
(a) The w-reweighted source Pw is defined as pwY = w ·pY ,
pwX|Y = pX|Y and pwX =

∫
Y p

w
Y=y · pX|Y=ydy.

(b) The optimal weight w∗ satisfies Pw
∗

Y = QY .

An important property of reweighted is that if PX|Y =
QX|Y , then dataset shift can be addressed on the w-
reweighted source, i.e., Pw

∗

XY = PX|Y P
w∗

Y = QX|YQY =
QXY and εPw∗ = εQ. Based on the reweighted source, we
will next show that the biased sample-wise transports in cur-
rent OT can be mitigated by the relaxation and reweighted
formulation.

As discussed before, though UOT can deal with the label
shift scenarios by relaxing the constraints on marginal dis-
tribution, the OT model is still required to learn coupling γ
with marginal γP close to P . It implies such a model may
fail in some extreme scenarios where the ideal marginal are
actually away from the original source domain P , e.g., γ
should not assign values to the outlier classes in P . There-
fore, it is necessary to reformulate the original UOT by
modifying the marginal penalty on P as Pw:

Sλ,β(Pw, Q, c) = min
γ∈M+(X 2)

∫
cdγ − λH(γ)

+ β [Dφ(γPw‖Pw) +Dφ(γQ‖Q)] .

(3)

An intuitive illustration of Eq. (3) and related OT for-
mulations are shown in Fig. 1, where the ideal γoracle such
that its marginals are Q. For original (i.e., balanced) OT E-
q. (1) in Fig 1 (a)-(b), the feasible regions are probabilistic



coupling set Π, which implies ideal solutions are always un-
achievable unlessw is the optimalw∗. Though the marginal
constraints are relaxed, and feasible regions are extended to
M+ in UOT Eq. (2), γoracle may be still hard to learn since
the penalty may be large, i.e., Fig 1 (c). Specifically, since
the center with 0 penalty value is Π(P,Q), the large dis-
crepancy between P and Q makes γoracle far away from the
low penalty region. For our formulation Eq. (3) in Fig 1 (d),
the model inherits the advantages of UOT and reweighted
OT. The reweighted source Pw further ensures that γoracle

is feasible, and the penalty value is smaller than UOT. Be-
sides, the relaxation on Pw reduces the risk of estimation
w, then the neighbours of Π are also feasible. Thus, the
ideal solution is still achievable even if w 6= w∗, which
overcomes the limitation of reweighted OT. In conclusion,
new formulation Eq. (3) ensures the existence of unbiased
γoracle for target domain Q and the feasibility of learning.

Conditional OT. Though the reweighted and relaxation
formulation Eq. (3) ensures the possibility of learning unbi-
ased γ for target domain Q, the conditional shift correction
for intrinsic structure transfer is still not guaranteed. There-
fore, to further achieve the conditional invariant property,
we now define conditional transport mechanism to learn
label-wise correlations and mitigate the negative transports
between inter-class sample pairs.

Definition 2 (Conditional OT) For any non-negative co-
efficient function α(·) on Y such that supp(α) =
supp(pY ) ∩ supp(qY ) and

∑
y∈Y α(y) = 1, the condi-

tional UOT between Pw and Q is defined as

OTαcond(Pw, Q, c) =
∑

y∈Y
α(y)OT(PwX|y, QX|y, c). (4)

Note that the general formulation Eq. (4) is suitable for
different OT-based models, e.g., Kantorovich OT, Sinkhorn
OT Sλ and UOT Sλ,β . An intuitive explanation for condi-
tional OT is that it can be taken as the sliced OT between
conditional distributions PX|y and QX|y over all label con-
ditions y ∈ Y . The coefficient α ensures that the condi-
tional transports are only carried out on shared classes, i.e.,
supp(α) = supp(pY ) ∩ supp(qY ). In conclusion, such
a formulation ensures that the OT problems for all shared
classes are considered, i.e., α(y) > 0 if y is shared classes.

For empirical application, the conditional OT in Eq. (4)
ensures that the conditional transport model is generally
feasible for extreme scenarios, e.g., outlier classes in P-
DA and unseen classes in open-set scenario. However,
since there are multiple (even ‘infinite’ for regression s-
cenario with continuous Y ) minimization problems (i.e.,
OT(PwX|y, QX|y, c)) in Eq. (4), this formulation is not gen-
erally applicable and has no closed-form solution. Besides,
the coefficient α is a hyperparameter, which is usually hard
to estimate. In the next, we will develop an equivalent prox-
y for conditional OT, i.e., MOT, which provides an inter-
pretable solution for α via the essential of data.

2.3. Theoretical Proxy and Estimation

In this section, we focus on the computation-friendly
proxy of conditional OT. Considering the empirical s-
cenario with finite samples, where labeled source data
Ds={xsi , ysi }ni=1 and unlabeled target data Dt={xti}mi=1 are
given, we first define the mask matrix for discrete OT and
propose the MOT methodology. Then we prove the theoret-
ical connection between MOT and conditional OT Eq. (4),
which ensures that MOT can be a generally applicable prox-
y with explicit fixed point solution.

Usually, P and Q are denoted as empirical distributions,
e.g., PX = 1

n

∑
i δxsi . Then the discrete formulation of

Eq. (3) can be written as

Sλ,β(Pw, Q,C) = min
Γ∈M+(Rn×m)

〈Γ,C〉F + λ 〈Γ, ln Γ〉F

+β [Dφ(ΓPw‖Pw) +Dφ(ΓQ‖Q)] , (5)

where Γ ∈ Rn×m is known as the transport plan matrix,
Cij = ‖xsi − xtj‖22 is the pair-wise cost, and 〈Γ,C〉F =∑
ij ΓijCij is the Frobenius inner product. For conditional

OT, the empirical conditional distributions are defined as
PX|Y=l = 1

nl

∑
i I[ysi=l] δxsi (QX|Y is similar), where nl is

the size of the l-th class source data. Then the dimensions
of plan and cost matrices in each OT problem of Eq. (4)
are nl × ml. Therefore, it is clear that the conditional OT
induces multiple OT problems between the cross-domain
clusters, and the plan in each sub-problem characterizes the
class-level dependency between source and target domains.

To overcome slice-wise computation problem of condi-
tional OT, the key idea is incorporating the multiple sub-
problems into single OT problem with mask mechanism.

Definition 3 (Masked OT) Given labels {ysi }ni=1 and
{yti}mi=1, the mask matrix M ∈ Rn×m is defined as

Mij ,

{
1, if ysi = ytj ,
∞, if ysi 6= ytj .

(6)

Then the masked cost is defined as C̃ = C �M, and the
masked OT is formulated as

OTmask(Pw, Q, C̃) = OT(Pw, Q, C̃). (7)

With the label-conditioned mask M, the inter-class dis-
tances in the modified cost C̃ will be enlarged to infinity.
Intuitively, such a mask on cost ensures that the transport
plan Γ will only assign values to the intra-class sample pair.
For example, the masked UOT is formulated as

Sλ,βmask(Pw, Q, C̃) = min
Γ∈M+(Rn×m)

〈Γ, C̃〉F + λ 〈Γ, ln Γ〉F

+β [Dφ(ΓPw‖Pw) +Dφ(ΓQ‖Q)] . (8)

Now we begin to present the main theoretical result-
s, which connect conditional OT with the computation-
friendly OTmask. Proofs are provided in appendix.



Theorem 1 (Proxy) Assume supp(qY ) ⊆ supp(pY ), the
following identities hold.
(a) Kantorovich OT:

OTmask(Pw
∗
, Q, C̃) = OTqYcond(Pw

∗
, Q,C).

(b) Sinkhorn OT:

Sλmask(Pw
∗
, Q, C̃) + λH(QY ) = Sλ,qYcond (Pw

∗
, Q,C).

(c) UOT: there exists non-negative α(·) on Y such that
supp(α) = supp(qY ),

∑
y∈Y α(y) = 1 and

Sλ,βmask(Pw
∗
, Q, C̃) + C0(α,QY ) = Sλ,β,αcond (Pw

∗
, Q,C),

where C0 is a constant depending only on α and QY .

Thm. 1 shows that MOT serves as a well-defined ap-
proximation for conditional OT. Specifically, for Kan-
torovich OT, MOT OTmask exactly equals to conditional
OT OTαcond; for Sinkhorn OT and UOT, MOT is equiva-
lent (up to a constant) to conditional OT OTαcond, and min-
imizing the computation-friendly MOT is sufficient to en-
sure a small OTαcond. We also present an intuitive illus-
tration for the connection between OTαcond and OTmask in
Fig. 2. In conclusion, the main results imply that MOT
can also achieve conditional transport for class-level knowl-
edge transfer, while overcoming the weaknesses of slice-
wise computation and hyperparameter α in OTαcond.

3. Algorithm and Application
Based on the theoretical guarantee of MOT, we now

present the numerical algorithm for solving Eq. (8) explic-
itly. Then a conditional invariant model with risk mini-
mization on the reweighted source domain and transported
source domain is proposed for PDA problem.

3.1. Algorithm: A Fixed Point Method

In this section, we focus on the numerical solution for the
masked UOT problem in Eq. (8). Note that such a solution
is also applicable for the Sinkhorn OT, since Sλ,βmask will boil
down to Sλmask when β =∞ (i.e., strict constraints),

As studied by Chizat et al. [6, Thm. 3.11], if Dφ = KL,
the original UOT problem Eq. (5) admits a fixed point so-
lution with explicit computation. Specifically, defining the
kernelK = exp(−C/λ) ∈ Rn×m, the fixed point iterations
for non-negative scaling vectors is formulated as

s
(i)
1 =

( pwX

Ks
(i−1)
2

) β
β+λ

, s
(i)
2 =

( qX

K>s
(i)
1

) β
β+λ

. (9)

Then the sequence diag(s
(i)
1 )Kdiag(s

(i)
2 ) will converge to

the solution of Eq. (5) (i.e., optimal transport plan Γ∗).
Similarly, the masked UOT Eq. (8) can also be solved

by the fixed point method. The major difference is that the

Algorithm 1 Fixed Point Method for Eq. (8)

Input: observations {(xsi , ysi )}ni=1 of P and {(xti, yti)}mi=1

of Q, maximum iteration Imax, importance weight w,
penalty parameter λ, β;

Output: transport plan Γ̃;
1: Initialize s

(0)
2 = [1, 1, . . . , 1]>/m ∈ Rm;

2: Compute pwX as Def. 1 and K̃ as Eq. (10);
3: for i = 1, 2, . . . , Imax do

4: s
(i)
1 ←

(
pwX

K̃s
(i−1)
2

) β
β+λ

, s
(i)
2 ←

(
qX

K̃>s
(i)
1

) β
β+λ

;

5: end for
6: Γ̃← diag(s

(Imax)
1 )K̃diag(s

(Imax)
2 ).

kernel K̃ induced by label-conditioned masked cost C̃ is
derived as

K̃ij =

{
0, if C̃ij =∞,

exp(−Cij/λ), else.
(10)

Then the transport plan for masked UOT can be de-
duced by replacing the kernel K in scaling iteration E-
q. (9) with the masked kernel K̃. Note that since Γ∗ ≈
diag(s

(i)
1 )K̃diag(s

(i)
2 ), then the transport mass Γ∗ij will be 0

if K̃ij = 0. Intuitively, the mask mechanism ensures that the
assignments between the inter-class samples will be signif-
icantly reduced. We summarize the fixed point method for
masked UOT Eq. (8) in Alg. 1, where the masked Sinkhorn
OT (β = ∞) can be solved by setting β/(β + λ) = 1 in
step 4. Note that since K̃ is block diagonal (up to permuta-
tions on samples), the iterations in step 4 can be effectively
implemented by iterating the block matrices parallelly.

3.2. Application: PDA

In this section, we focus on the OT-based modeling for
extreme PDA scenario, and propose MOT-based model to
learn the cross-domain invariant knowledge.

Motivated by the discussion of successful DA in Sec. 2.1,
we are interested in two problems: 1) learning conditional
invariant representation Z via OT; 2) learning transferrable
model with unbiased risk estimation. With these goals in
mind, we decompose the learning model f as fc ◦fr, where
fr : X 7→ Z is representation learner and fc : Z 7→ Y is
task learner. These compositions are parameterized by neu-
ral networks, and the overall framework can be summarized
as following two alternative processes (shown as Fig. 2).

Transport Assignment Learning. In this process, we
aim to learn an ideal transport plan Γ for characterizing
the cross-domain sample correspondence. Firstly, we es-
timate weight w with BBSE [22] algorithm, whose con-
vergence property is theoretically ensured. Then the label-
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Figure 2. Illustration of the MOT-based model for PDA. Stage
Red: transport assignment learning for obtaining ideal transport
plan Γ̃ with well-defined proxy OTmask; Stage Black: condition-
al alignment and risk minimization for learning conditional invari-
ant representation Z and transferrable model fc ◦ fr .

conditioned masked UOT Eq. (8) is employed, i.e.,

Lcond(fr,Γ) = 〈Γ, C̃ + λ ln Γ〉F
+β
[
Dφ(ΓPwZ ‖P

w
Z ) +Dφ(ΓQZ‖QZ)

]
, (11)

where the cost matrix Cij = ‖zsi − ztj‖22. Note that this
transport assignment learning is implemented in represen-
tation space Z with learner fr, which ensures the model
can dynamically measure and bridge the conditional dis-
crepancy during training procedure. Since there are no la-
bels for target domain, we use the pseudo labels ŷ = f(x)
for estimating the masked cost C̃. In this stage, the trans-
port plan will be learned with fixed representation learner
fr, i.e., compute Γ̃ = arg minΓ Lcond according to Alg. 1.

Conditional Alignment and Risk Minimization. In
this process, we aim to estimate unbiased risk and cross-
domain conditional discrepancy based on the learned ideal
assignment Γ̃. Then the model f will be optimized accord-
ing to the estimated objectives.

For conditional alignment, the masked UOT loss Lcond
Eq. (11) with fixed Γ̃ is sufficient to achieve class-level
transport. Theoretically, it can also mitigate the conditional
distribution shift as shown in Thm. 1. Besides, since Lcond
is built on reweighted source domain, the risk of negative
transfer can be significantly reduced.

For risk minimization, apart from the risk estimation on
reweighted source Pw, we propose to learn risk on trans-
ported source P̃w based on the learned ideal assignment Γ̃.
Such transport establishes the explicit connection between
empirical risk and target data. Specifically, given Γ̃, the
source data can be represented by the target samples via the
following barycenter map problem:

z̃si = arg min
z

∑m

j=1
Γ̃ij‖z− ztj‖22. (12)

As shown by Courty et al. [8], an analytic solution for E-
q. (12), called barycenter mapping ψ, can be written as

z̃si = ψΓ̃i,:
(Zt) = (< Γ̃i,:,1m >)−1

∑m

j=1
Γ̃ijz

t
j . (13)

Then we denote observations of transported source P̃w as
{(z̃si , ysi )}ni=1, and propose to learn empirical risk on P̃w as

EP̃w [`(fc(z̃
s), ys)] = EQ[`(fc ◦ ψ ◦ fr(xt), ys)]. (14)

An intuitive explanation for barycenter mapping ψ is that
it considers the minimized cost for reconstructing source
sample zs in the representation space of target domain, i.e.,
the range space Im(Zt). Such a reconstruction ensures that
the target representation space can be supervisedly opti-
mized via its transport correspondence with source data,
i.e., ψ ◦ fr(xt) in transported source risk Eq. (14). With
Pw and P̃w, we can formulate the unbiased empirical risk
estimations for task learning as

Lrisk(fr, fc) = EPw [`(f(xs), ys)] + EP̃w [`(fc(z̃
s), ys)].

Finally, the optimization objective in conditional align-
ment and risk minimization stage can be summarized as

min
fr,fc

L(fr, fc) = Lrisk(fr, fc) + ηLcond(fr, Γ̃). (15)

4. Experiments
In this section, we validate MOT methodology and eval-

uate the proposed PDA model by conducting experiments
on standard PDA datasets, i.e., Office-Home [39], VisDA-
2017 [31], Office-31 [36] and ImageCLEF [4]. Details of
datasets and implementations are provided in appendix.

Proxy Analysis. To validate the proxy property of
masked OT in Thm. 1, we compare values of OTαcond and
OTmask on Office-Home. Results in Fig. 3a-3d imply that
the absolute difference between OTαcond and OTmask (with
constant in Thm. 1) is almost zero and is negligible com-
pared to the scales of OT values. These results demonstrate
that the theoretical results are valid, and OTαcond and proxy
OTmask are indeed equivalent in application.

OT Formulations. To compare the existing OT for-
mulations with proposed modelings, we visualize the plan
values (darker color is higher in value) and report the
masses assigned to outlier, (shared) inter-class and intra-
class on Office-Home. Results in Fig. 3e-3h demonstrate
that reweighted OT actually reduces assignments to outli-
er classes, but estimated w may be less accurate for shared
classes and inter-class mass is large. Though UOT learns
better assignments for shared classes, there is large mass for
outlier classes since marginal penalty may be unaffordable
for extreme scenario. In Fig. 3g, our reweighted and relax-
ation formulation Eq. (3) is superior and the intra-class mass
is larger. Further, MOT ensures a significant block diagonal
structure for transport plan in Fig. 3h, where the inter-class
mass and outlier mass are significantly reduced by penalty
on cost matrix. These results validate that MOT methodol-
ogy can learn better plan for task knowledge transfer.

Conditional Maksed OT OTmask 
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Figure 3. (a)-(d): Numerical validation of the proxy theorem on all transfer tasks of Office-Home, where OTαcond and OTmask are actually
equivalent in empirical scenarios. (e)-(h): Comparison of different OT formulations, where proposed methods Eq. (3) and Eq. (8) are better.

Modules Office VisDA Office Image MeanOT EP̃w [`] Lcond Home 2017 31 CLEF
ROT X X 73.9 73.1 93.7 88.2 82.2
UOT X X 69.1 67.6 92.5 87.1 79.1

Eq. (3) X X 74.2 76.8 94.3 89.2 83.6
MOT X 76.6 84.9 95.4 90.4 86.8
MOT X 74.6 89.3 97.5 91.9 88.3
MOT X X 80.6 92.4 98.4 93.6 91.3

Table 1. Ablation study (ResNet-50).

Ablation Study. To evaluate the effectiveness of differ-
ent modules, we present results of ablation experiments in
Tab. 1. We first consider different OT formulations for mod-
el proposed in Sec. 3.2. The 1st-3rd rows imply that pro-
posed formulation Eq. (3) achieve higher accuracies than
reweighted OT (ROT) and UOT. Further, the 6th row im-
plies mask mechanism can improve accuracies significantly
with label-conditioned knowledge transfer. These results
validate the superiority of new OT formulations. Besides,
we consider the transported source risk EP̃w [`] in Eq. (14)
and conditional alignment Lcond in Eq. (15). Comparing
the results in 4th-6th, we observe that both EP̃w [`] and Lcond
can improve model performance, and the full MOT model is
significantly better. These results demonstrate that proposed
invariant learning model with transported risk minimization
is effective in dealing with PDA problem.

Feature Visualization. To analyze the quality of learned
representations, we use t-SNE [26] to visualize the 2-D fea-
tures of different OT formulations on Office-Home. For
reweighted OT and UOT, though the negative impacts of
outlier classes are reduced as Fig. 4a-4b, the discriminabil-
ity for shared classes are not sufficiently learned, and some
samples are transferred to incorrect classes with marginal
adaptation. For formulation Eq. (3), the representations are
more compact, and fewer samples are overlapping with out-
lier classes. Further, the conditional alignment in MOT en-
sures the class-wise alignment for cross domain samples,
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Figure 4. t-SNE [26] visualization of learned representations,
where shared classes have different color and outlier classes are
gray. ’◦’: source samples; ’+’: target samples; ’number’: labels.

then the intra-class compactness and inter-class separability
are significantly improved as Fig. 4d. These results demon-
strate that the proposed OT formulations and invariant risk
learning model indeed learn correct transport relations and
discriminative representations.

Different PDA Scenarios. We evaluate OT-based mod-
els under different PDA scenarios by varying the number
of shared classes on Office-Home. The results in Fig 5a-
5b imply that all models achieve high accuracy when there
are less shared classes, since there are relatively more sam-
ples/knowledge on the source domain. With the increase
of shared classes, the label discrepancy is smaller, but the
target classification task is more challenging since there are
more target samples. Thus, we can observe that the accura-
cies increase at interval [20, 30] and then decrease with the
increasing target samples. Generally, MOT is superior to
other OT modelings, which demonstrate the effectiveness
of proposed methodology in different learning scenarios.

Comparison with SOTA. To evaluate the model perfor-
mance, we compare MOT with several SOTA PDA method-
s, and present results in Tab. 2-3. 1) For adversarial adapta-



Methods Office-Home VisDA-2017
A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean S→R

Source [17] 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.4 45.3
DANN [13] 43.8 67.9 77.5 63.7 59.0 67.6 56.8 37.1 76.4 69.2 44.3 77.5 61.7 51.0
PADA [2] 52.0 67.0 78.7 52.2 53.8 59.0 52.6 43.2 78.8 73.7 56.6 77.1 62.1 53.5
ETN [3] 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5 -
SAFN [43] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8 67.7
DRCN [21] 51.6 75.8 82.0 62.9 65.1 72.9 67.4 50.0 81.0 76.4 57.7 79.3 68.5 58.2
DMP [25] 59.0 81.2 86.3 68.1 72.8 78.8 71.2 57.6 84.9 77.3 61.5 82.9 73.5 72.7
JUMBOT [11] 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5 84.0†
AR [16] 67.4 85.3 90.0 77.3 70.6 85.2 79.0 64.8 89.5 80.4 66.2 86.4 78.3 88.7
m-POT [28] 64.6 80.6 87.2 76.4 77.6 83.6 77.1 63.7 87.6 81.4 68.5 87.4 78.0 87.0†

MOT 63.1 86.1 92.3 78.7 85.4 89.6 79.8 62.3 89.7 83.8 67.0 89.6 80.6 92.4

Table 2. Classification accuracies (%) on Office-Home and VisDA-2017 datasets (ResNet-50). † Results reported by Salvador et al. [37].

Office-31 A→WD→WW→DA→DD→AW→AMean
Source [17] 75.6 96.3 98.1 83.4 83.9 85.0 87.1
DANN [13] 73.6 96.3 98.7 81.5 82.8 86.1 86.5
PADA [2] 86.5 99.3 100 82.2 92.7 95.4 92.7
SAFN [43] 87.5 96.6 99.4 89.8 92.6 92.7 93.1
DRCN [21] 90.8 100 100 94.3 95.2 94.8 95.9
DMP [25] 96.6 100 100 96.4 95.1 95.4 97.2
AR [16] 93.5 100 99.7 96.8 95.5 96.0 96.9
MOT 99.3 100 100 98.7 96.1 96.4 98.4

ImageCLEF I→P P→I I→C C→I C→P P→C Mean
Source [17] 78.3 86.9 91.0 84.3 72.5 91.5 84.1
DANN [13] 78.1 86.3 91.3 84.0 72.1 90.3 83.7
PADA [2] 81.7 92.1 94.6 89.8 77.7 94.1 88.3
SAFN [43] 79.5 90.7 93.0 90.3 77.8 94.0 87.5
DMP [25] 82.4 94.5 96.7 94.3 78.7 96.4 90.5
MOT 87.7 95.0 98.0 95.0 87.0 98.7 93.6

Table 3. Classification accuracies (%) on Office-31 and Image-
CLEF datasets (ResNet-50).
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Figure 5. Accuracy curves and 95% confidence intervals of OT-
based models by varying the number of shared classes.

tion, PADA improves DANN by introducing the reweight-
ed source Pw to adversarial training. The better perfor-
mance validates the effectiveness of label distribution cor-
rection for PDA. Compared with these adversarial models
with marginal alignment, MOT learns conditional invariant
representations with masked mechanism. 2) For metric-
based adaptation models SAFN and DMP, though label-
conditioned information is incorporated, the explicit con-
ditional distribution alignment is not ensured. 3) Compared
with other OT models (JUMBOT, AR and m-POT), MOT
overcomes the limitations of existing OT modelings as dis-

cussed before. Specifically, AR is reweighted-based model,
which applies Pw to the dual OT problem, but the perfor-
mance may be sensitive to the precision of w. JUMBOT
and m-POT are respectively unbalanced transport model
and partial transport model, which can be both regarded
as relaxation-based OT without strict marginal constraints,
but the relaxation may be less effective when label shift is
severe, e.g., PDA. Fortunately, our formulation Eq. (3) in-
tegrating the advantages of relaxation and reweighted, and
mask mechanism further ensures the sufficiency of condi-
tional shift correction. Therefore, MOT achieve signifi-
cant improvements (about 1%∼4%) on four PDA datasets,
which validates the effectiveness of proposed methodology.

5. Conclusion
In this paper, we systematically study the limitations

in current OT modelings for real-world learning scenarios,
and then develop novel OT methodology with theoretical
guarantees. For theoretical aspect, a novel formulation is
proposed with reweighted and relaxation operations, and a
new OT variant called MOT is proposed by exploring the
mask mechanism; the equivalent relation between MOT and
conditional OT is proved, which implies the computation-
friendly MOT can also characterize the conditional infor-
mation in transportation. For methodology, we propose an
invariant learning model with MOT, whose effectiveness is
validated by extensively numerical experiments and analy-
sis. An interesting future direction is studying theory and
algorithm for masked partial OT and MOT with soft labels.
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Flamary, Devis Tuia, and Nicolas Courty. Deepjdot: Deep
joint distribution optimal transport for unsupervised domain
adaptation. In ECCV, pages 447–463, 2018. 1, 2, 3

[11] Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nico-
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Abstract

This supplementary material contains the proofs of theoretical results, implementation details for numerical experiments
and illustrations of experiment datasets.

S.1. Proof of Theorem 1

Theorem 1 (Proxy) Assume supp(qY ) ⊆ supp(pY ), the following identities hold.
(a) Kantorovich OT:

OTmask(Pw
∗
, Q, C̃) = OTqYcond(Pw

∗
, Q,C).

(b) Sinkhorn OT:
Sλmask(Pw

∗
, Q, C̃) + λH(QY ) = Sλ,qYcond (Pw

∗
, Q,C).

(c) UOT: there exists non-negative α(·) on Y such that supp(α) = supp(qY ),
∑
y∈Y α(y) = 1 and

Sλ,βmask(Pw
∗
, Q, C̃) + C0(α,QY ) = Sλ,β,αcond (Pw

∗
, Q,C),

where C0 is a constant depending only on α and QY .

Proof For convenience, we first introduce some notations for proof. For finite sample setting, denote |Y| = k as class
number, nl/ml as the sample size of l-th source/target class. Since supp(qY ) ⊆ supp(pY ), we denote supp(pY ) = Y =

{1, 2, . . . , k}, supp(pY ) = {1, 2, . . . , k0} and n0 =
∑k0
l=1 nl, where k0 ≤ k is the number of shared classes and n0 the

sample size of shared classes on source domain. Without loss of generality, we denote the data matrix with cluster data as
Xs = [Xs

1,X
s
2, . . . ,X

s
k] ∈ Rd×n and Xt = [Xt

1,X
t
2, . . . ,X

t
k0

] ∈ Rd×m, where d is data dimension, Xs
l ∈ Rd×nl and

Xt
l ∈ Rd×ml are the data matrix of l-th source class and l-th target class, respectively. Generally, for a matrix A, let the

uppercase letters Aij denote the blocks of A and lowercase letters aij the entries of A. Note that for the reweighted source
we have

pw
∗

X =
∑
y∈Y

pw
∗

y pX|y =
∑
y∈Y

qypX|y =

k0∑
l=1

qY=lpX|l, (S.1)

which implies the proportions of outlier classes are 0 in reweighted distribution. Then a submatrix C̃sub ∈ Rn0×m of C̃,
which considers the cost between samples of shared classes, is defined as the first n0 rows of C̃. Now we begin to prove the
main results.

(1) Kantorvich OT.
∗Corresponding Author.



Recall the masked Kantorvich OT is formulated as

OTmask(Pw
∗
, Q, C̃) = min

Γ∈Π(Pw
∗

X ,QX)

〈
Γ, C̃

〉
F
.

Let the source distribution of shared classes be rw
∗

X ∈ Rn0 , which consists of the first n0 elements of pw
∗
. Since the values

of outlier classes’ samples are 0 in pw
∗

X ∈ Rn as Eq. (S.1), there transport plan for outlier classes will be 0, i.e., γij = 0 if
i > n0. Then the original problem boils down to the transportation between shared classes:

OTmask(Pw
∗
, Q, C̃) = min

Γ∈Π(Pw
∗

X ,QX)

〈
Γ, C̃

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈
Γsub, C̃sub

〉
F
.

On the other hands, note that the transport plan between inter-class sample pair will be 0 since, i.e., γsub
ij = 0 if ysi 6= ytj ,

since otherwise the overall transport cost will be infinity and the problem will not be well-defined. It implies the plan Γsub

under masked cost admits a block diagonal structure, then we have

OTmask(Pw
∗
, Q, C̃) = min

Γsub∈Π(Rw
∗

X ,QX)

〈
Γsub, C̃sub

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈 Γsub
11 · · · 0
...

. . .
...

0 · · · Γsub
k0k0

 ,
 C̃sub

11 · · · ∞
...

. . .
...

∞ · · · C̃sub
k0k0

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

k0∑
l=1

〈
Γsub
ll , C̃sub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll ∈Π(qY=lRw

∗
X|l,qY=lQX|l)

〈
Γsub
ll , C̃sub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll

qY=l
∈Π(Rw

∗
X|l,QX|l)

qY=l

〈
Γsub
ll

qY=l
, C̃sub

ll

〉
F(

Γ̄sub
ll ,

Γsub
ll

qY=l

)
=

k0∑
l=1

qY=l min
Γ̄sub
ll ∈Π(Rw

∗
X|l,QX|l)

〈
Γ̄sub
ll , C̃sub

ll

〉
F

=

k0∑
l=1

qY=lOT(Rw
∗

X|l, QX|l, C̃
sub
ll )

=

k0∑
l=1

qY=lOT(Pw
∗

X|l, QX|l,C
sub
ll ) (S.2)

= OTqYcond(Pw
∗
, Q,C),

where Γ̄sub
ll and C̃sub

ll are nl×ml blocks of l-th class, Eq. (S.2) holds sinceRw
∗

X|l = Pw
∗

X|l for shared classes and C̃sub
ll = Csub

ll

for intra-class sample pairs.

(2) Sinkhorn OT.
Recall the masked Sinkhorn OT is formulated as

Sλmask(Pw
∗
, Q, C̃) = min

Γ∈Π(Pw
∗

X ,QX)

〈
Γ, C̃

〉
F

+ λ 〈Γ, ln Γ〉F .



Similarly, we have

Sλmask(Pw
∗
, Q, C̃)

= min
Γ∈Π(Pw

∗
X ,QX)

〈
Γ, C̃

〉
F

+ λ 〈Γ, ln Γ〉F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈
Γsub, C̃sub

〉
F

+ λ
〈
Γsub, ln Γsub

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

〈 Γsub
11 · · · 0
...

. . .
...

0 · · · Γsub
k0k0

 ,
 C̃sub

11 · · · ∞
...

. . .
...

∞ · · · C̃sub
k0k0

+ λ ln

 Γsub
11 · · · 0
...

. . .
...

0 · · · Γsub
k0k0

〉
F

= min
Γsub∈Π(Rw

∗
X ,QX)

k0∑
l=1

〈
Γsub
ll , C̃sub

ll

〉
F

+ λ
〈
Γsub
ll , ln Γsub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll ∈Π(qY=lRw

∗
X|l,qY=lQX|l)

〈
Γsub
ll , C̃sub

ll

〉
F

+ λ
〈
Γsub
ll , ln Γsub

ll

〉
F

=

k0∑
l=1

min
Γsub
ll

qY=l
∈Π(Rw

∗
X|l,QX|l)

qY=l

[〈
Γsub
ll

qY=l
, C̃sub

ll

〉
F

+ λ

〈
Γsub
ll

qY=l
, ln Γsub

ll

〉
F

]

=

k0∑
l=1

min
Γsub
ll

qY=l
∈Π(Rw

∗
X|l,QX|l)

qY=l

[〈
Γsub
ll

qY=l
, C̃sub

ll

〉
F

+ λ

〈
Γsub
ll

qY=l
, ln

Γsub
ll

qY=l

〉
F

+ λ

〈
Γsub
ll

qY=l
, (ln qY=l)1nl×ml

〉
F

]

=

k0∑
l=1

qY=l

[
min

Γ̄sub
ll ∈Π(Rw

∗
X|l,QX|l)

〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ ln qY=l

〈
Γ̄sub
ll ,1nl×ml

〉
F

]

=

k0∑
l=1

qY=l

[
min

Γ̄sub
ll ∈Π(Rw

∗
X|l,QX|l)

〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ ln qY=l

]

=

k0∑
l=1

qY=lS
λ(Rw

∗

X|l, QX|l, C̃
sub
ll ) + λ

k0∑
l=1

qY=l ln qY=l

=

k0∑
l=1

qY=lS
λ(Pw

∗

X|l, QX|l, C̃
sub
ll )− λH(QY )

= Sλ,qYcond(Pw
∗
, Q,C)− λH(QY ).

Therefore, we have Sλ,qYcond(Pw
∗
, Q,C) = Sλmask(Pw

∗
, Q, C̃) + λH(QY )

(3) Unbalanced OT.
Recall the masked unbalanced OT is formulated as

Sλ,βmask(Pw
∗
, Q, C̃) = min

Γ∈M+(Rn×m)
〈Γ, C̃〉F + λ 〈Γ, ln Γ〉F + β

[
Dφ(ΓPw∗X

‖Pw
∗

X ) +Dφ(ΓQX‖QX)
]
,

where Dφ is KL divergence. The major difference between unbalanced OT and other OTs with marginal constraints is that
the Γ is only required to be a distribution over Rn×m, i.e., Γ ∈ M+(Rn×m) will satisfy that γij >= 0 and

∑
ij γij = 1.

Since Γ is no longer a coupling of (Pw
∗
, Q, C̃), it is necessary to consider whether the 0 transport plans for outlier classes

still hold.
Note the KL penalty Dφ(ΓPw∗X

‖Pw∗X ) implies that ΓPw∗X
should be absolutely continuous with respect to Pw

∗

X , since
otherwise the penalty value will be infinity and the problem is not well-defined. Therefore, for the i-th source sample, if it
belongs to outlier classes, the corresponding values in Pw

∗

X are 0 (i.e., [Pw
∗

X ]i = 0), and the transport plan will also be 0
(i.e., [ΓPw∗X

]i =
∑
j γij = 0 =⇒ γij = 0). Therefore, the original problem can also be written as the transportation

between shared classes, i.e.,



Sλ,βmask(Pw
∗
, Q, C̃) = min

Γsub∈M+(Rn0×m)
〈Γsub, C̃sub〉F + λ

〈
Γsub, ln Γsub

〉
F

+ β
[
Dφ(Γsub

Rw
∗

X
‖Rw

∗

X ) +Dφ(Γsub
QX‖QX)

]
.

Let Γsub∗ be the optimal solution for the objective above. Similarly, Γsub∗ is also block-diagonal since the non-zero plan
values for inter-class sample pairs (xsi ,x

t
j) will induce infinite transport cost with c̃sub

ij . Then we consider the following
coefficient

α(l) =
∑
ij

[Γsub∗

ll ]ij ,

which represents the values assigned to the transportation between l-th source class and l-th target class. It is clear that α(·)
is non-negative on Y and satisfies that supp(α) = supp(qY ). For simplicity, we denote the blocks of Γsub

Rw
∗

X

and Γsub
QX

as

Γsub
Rw
∗

X
=

 os1
...

osk0

 ∈ Rn0 , Γsub
QX =

 ot1
...

otk0

 ∈ Rm

where osl ∈ Rnl and otl ∈ Rml . Then we have

Sλ,βmask(Pw
∗
, Q, C̃)

= min
Γsub∈M+(Rn0×m)

〈
Γsub, C̃sub

〉
F

+ λ
〈
Γsub, ln Γsub

〉
F

+ β
[
Dφ(Γsub

Rw
∗

X
‖Rw

∗

X ) +Dφ(Γsub
QX‖QX)

]
= min

Γsub∈M+(Rn0×m)

〈
Γsub, C̃sub

〉
F

+ λ
〈
Γsub, ln Γsub

〉
F

+ β

[〈
Γsub
Rw
∗

X
, ln

Γsub
Rw
∗

X

Rw
∗

X

〉
F

+

〈
Γsub
QX , ln

Γsub
QX

QX

〉
F

]

=

k0∑
l=1

min
Γsub
ll ∈α(l)M+(Rnl×ml )

〈
Γsub
ll , C̃sub

ll

〉
F

+ λ
〈
Γsub
ll , ln Γsub

ll

〉
F

+ β

[〈
osl , ln

osl
rw
∗

Y=lR
w∗

X|l

〉
F

+

〈
otl , ln

otl
qY=lQX|l

〉
F

]
(S.3)

=

k0∑
l=1

min
Γsub
ll
α(l)
∈M+(Rnl×ml )

α(l)

[〈
Γsub
ll

α(l)
, C̃sub

ll

〉
F

+ λ

〈
Γsub
ll

α(l)
, ln Γsub

ll

〉
F

+ β

〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+ β

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

]

=

k0∑
l=1

min
Γ̄sub
ll ∈M+(Rnl×ml )

α(l)

[〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ lnα(l)

+ β

〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+ β

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

]
, (S.4)

where Eq. (S.3) holds since Γsub∗ is block diagonal, which implies the minimization problem can be divided into k0 sub-
problems and the mass assigned to l-th class is α(l). Note that for the KL terms, we have〈

osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

=

〈
osl
α(l)

, ln
osl

α(l)Rw
∗

X|l

〉
F

+

〈
osl
α(l)

, ln
α(l)1nl
qY=l

〉
F

+

〈
otl
α(l)

, ln
otl

α(l)QX|l

〉
F

+

〈
otl
α(l)

, ln
α(l)1ml
qY=l

〉
F

. (S.5)

Denote ōsl =
osl
α(l) ∈ and ōtl =

otl
α(l) , then

∑
i[ō

s
l ]i =

∑
i[ō

t
l ]i = 1 since the mass assigned to l-th class is α(l). Then Eq. (S.5)



can be further written as〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

=

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ ln
α(l)

qY=l
〈ōsl ,1nl〉F +

〈
ōtl , ln

ōtl
QX|l

〉
F

+ ln
α(l)

qY=l

〈
ōtl ,1ml

〉
F

=

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ ln
α(l)

qY=l
+

〈
ōtl , ln

ōtl
QX|l

〉
F

+ ln
α(l)

qY=l
(S.6)

Finally, by substituting KL terms in Eq. (S.6) into main proof Eq. (S.4), we have

Sλ,βmask(Pw
∗
, Q, C̃)

=

k0∑
l=1

min
Γ̄sub
ll ∈M+(Rnl×ml )

α(l)

[〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ lnα(l)

+ β

〈
osl
α(l)

, ln
osl

qY=lRw
∗

X|l

〉
F

+ β

〈
otl
α(l)

, ln
otl

qY=lQX|l

〉
F

]

=

k0∑
l=1

min
Γ̄sub
ll ∈M+(Rnl×ml )

α(l)

[〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ λ lnα(l)

+ β

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ β ln
α(l)

qY=l
+ β

〈
ōtl , ln

ōtl
QX|l

〉
F

+ β ln
α(l)

qY=l

]

=

k0∑
l=1

α(l)

[
min

Γ̄sub
ll ∈M+(Rnl×ml )

〈
Γ̄sub
ll , C̃sub

ll

〉
F

+ λ
〈
Γ̄sub
ll , ln Γ̄sub

ll

〉
F

+ β

〈
ōsl , ln

ōsl
Rw

∗

X|l

〉
F

+ β

〈
ōtl , ln

ōtl
QX|l

〉
F

]

+

k0∑
l=1

[
λα(l) lnα(l) + 2β lnα(l)

α(l)

qY=l

]

=

k0∑
l=1

α(l)Sλ,β(Pw
∗

X|l, QX|l, C̃
sub
ll )− λH(QY ) + 2βDφ(α‖QY )

= Sλ,β,αcond (Pw
∗
, Q,C)− λH(QY ) + 2βDφ(α‖QY ).

Therefore, the non-negative α(·) such that Sλ,β,αcond (Pw
∗
, Q,C) = Sλ,βmask(Pw

∗
, Q, C̃) +C0(α,QY ), where C0(α,QY ) =

λH(QY )− 2βDφ(α‖QY )

S.2. Experiment Details and Additional Discussions
S.2.1. Implementation Details

The network-based model is implemented in PyTorch [11] platform. For network architectures, fr consists of ResNet-
50 [6] and two Fully-Connected (FC) layers (R2048 → R1024 → R512) with batch normalization, where the FC layers are
activated by Leaky ReLU (α = 0.2) and Tanh, respectively; fc is a single FC layer (R512 → R|Y|) with SoftMax activation.
For optimization, we use batch gradient descent with Adam optimizer (β1 = 0.9, β2 = 0.999), where the learning rate is set
as 1e-3. Entropic parameter λ is empirically set as 1e-2 in numerical experiments. To ensure the more accurate OT estimation
with larger batch-size, we load the pretrained parameter on ImageNet for the ResNet-50 in representation learner fr, and then
froze them during the training. Therefore, the overall model is trained with batch gradient descent on Office-Home, Office-
31, ImageCLEF and mini-batch gradient descent (batch size is 5k) on VisDA-2017. The importance weight w is estimated
by BBSE algorithm [7] and updated on the fly. In training stage, we first warm up the model on source domain with risk
EP [`(f(xs), ys)] for 20 epochs, and then train the model with full objective. Such a warm up will reduce the uncertainty
induced by pseudo labels effectively. The overall training pipeline for full objective is summarized in Alg. S.1. Note that



Algorithm S.1 MOT-based Model for PDA

Input: labeled source data {(xsi , ysi )}ni=1 and unlabeled target data {(xti)}mi=1, training epochs Emax, conditional alignment
parameter η;

Output: representation learner fr, task learner fc;
1: Initialize fr and fc as neural networks;
2: for i = 1, 2, . . . , Emax do
3: Forward propagate {xsi}

ns
i=1 and {xti}

nt
i=1 and obtain {(zsi , ŷsi )}

ns
i=1 and {(zti, , ŷti)}

nt
i=1;

# Weight Estimation
4: Estimate importance weight w on-the-fly with BBSE algorithm [7];

# Transport Assignment Learning
5: Compute reweighted source pwX as Def. 1 and maksed kernel K̃ as Eq. (10) with pseudo target labels {ŷti}

nt
i=1;

6: Compute transport plan Γ̃ = arg minΓ Lcond for MOT according to Alg. 1;
# Conditional Alignment and Risk Minimization

7: Compute alignment loss Lcond(fr, Γ̃) and risk loss Lrisk(fr, fc) with transport plan Γ̃ and barycenter mapping ψ;
8: Update learners with overall loss L(fr, fc) = Lrisk(fr, fc) + ηLcond(fr, Γ̃):

fr ← fr − λ∇frL(fr, fc), fc ← fc − λ∇fcL(fr, fc)
9: end for

studying deep model-based implementation with mini-batch OT [3, 9] is also a meaningful direction. Compared with the
shallow networks with larger batch-size, mini-batch OT algorithm ensures larger capacity of deep model.

S.2.2. Dataset Details

• Office-Home [14] contains 15k images from 4 domains with 65 classes, i.e., Art (A), Clipart (C), Product (P) and
Real-World (R). In PDA setting, target domain consists of the first 25 classes (alphabetical order).
• VisDA-2017 [12] contains 152k synthetic images from domain S and 55k real images from domain R. There are 12

classes, and we form target domain with the first 6 classes.
•Office-31 [13] contains 4k images and 31 classes from Amazon (A), Webcam (W), Dslr (D). We follow standard protocol

[1] to form target domain with 10 classes.
• ImageCLEF [2] contains 3 domains with 12 classes, i.e., Caltech (C), ImageNet (I), Pascal (P). We form target domain

with the first 6 classes as protocol [8].

S.2.3. About Parameters

There are two major parameters for MOT model, i.e., entropic regularization parameter λ and relaxation parameter β for
UOT. For sensitivity of parameters, the model performance is generally robust under different entropic parameter λ, while
the larger λ (i.e., closer to original OT) may reduce the convergence speed of Sinkhorn iteration. For relaxation parameter β,
its impact is related with the degree of label shift. When label shift is severer, β (i.e., penalty on marginals) should be smaller
to reduce negative transfer. In this case, the impact of β will be significant, and vice versa.

S.2.4. About Barycenter Map

Note that the barycenter maps learned with original plan and entropy regularized plan are generally different. Empirically,
we observed that intuitive strategy for increasing the sparsity of Sinkhorn plan is effective. For example, truncating the small
values in plan Γ with threshold or contribution ratio can improve the proportion of accurate connection pairs in Γ. Therefore,
learning de-biased map and reducing the density of Γ, e.g., low entropy regularization in Eq. (12), could be meaningful
problems.

S.2.5. About Partial OT

For relaxation strategy, there is another methodology called partial OT (POT) [4, 5, 10]. For masked version of POT,
the empirical modeling can be directly achieved by replacing the UOT-based relaxation model Eq. (8) with partial OT. But,
the theoretical understanding of mask mechanism with partial OT needs an in-depth analysis, which could be a meaningful
problem. We will provide preliminary discussions on masked partial OT.
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